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Abstract: Soil moisture dynamics and its spatial distribution represent important data of a 
landscape. Until today, a precise and spatially continuous measurement of these is difficult. 
Current remote sensing approaches focus on an upscaling of measured hyperspectral and 
hydrological data from laboratory setups by means of hydrological models. In this paper, we 
follow an alternative approach on a pedon-scale. We present a multilateral dataset from an 
irrigation campaign in August 2017 employing a comprehensive hydrological, geophysical, 
and hyperspectral sensor setup. In a first regression modeling approach, we apply machine 
learning methods to estimate subsurface soil moisture based on hyperspectral data and 
hydrological reference data. The derived results reveal the potential of estimating field-
measured soil moisture. They provide the basis for further studies of modeling approaches 
based on this unique dataset. 
 

1 Introduction 

Soil moisture is a key variable of a landscape. Knowledge about its dynamics and spatial 
distributions is crucial for many application areas from agricultural planning to disaster 
mitigation. Characterizing soil moisture of field sites usually is based on sparse or incomplete 
experimental data. Common approaches to measure the spatial-temporal dynamics of soil 
moisture rely either on point-wise measurements e.g. with probes relying on estimations of the 
relative electrical permittivity or soil water tension, or on procedures such as satellite-based 
remote sensing techniques. The point-wise measurements provide a high temporal but sparse 
spatial resolution. Satellite-based techniques are characterized by a high spatial, heterogeneous, 
and poor temporal resolution. This gap between spatial and temporal resolution is well-know 
(RUBIN & HUBBARD 2005; ROBINSON et al. 2008).  
To close this gap, researchers increasingly apply terrestrial remote sensing techniques in 
particular with passive sensors since the 1970s (HUETE & USTIN 2004). One possible solution 
opens up with recent developments in close-range hyperspectral remote sensing. It provides a 
high spatial and spectral resolution for analyzing the dynamics of surface signatures. To retrieve 
spectral signatures from the recorded hyperspectral data presents a major task in this context (cf. 
SALISBURY & DARIA 1992).  
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Hyperspectral sensors measure only the reflectance of the top soil layer. However, the soil 
surface consists of mixed features. They overlay in the reflectance spectra which results in 
interference. Mixed reflections often impede inference on the state and the process of the 
investigated object (cf. PLAZA et al. 2003; CLARK et al. 2003). Hence, such effects constitute the 
modeling of subsurface states and processes based on hyperspectral data as a remaining and 
challenging task. Many studies which deal with the estimation of soil moisture from spectral 
signatures reduce the overlaying mixture aspects by examining only bare soil. These studies are 
mentioned in the subsequent section. They conduct these experiments primarily in a laboratory 
setting or combine these settings with a field experiment.  
From a model-based perspective, two approaches are commonly applied to estimate soil-
moisture contents based on hyperspectral data: First, the widely used spectral indices which 
essentially engineer features by combining spectral bands (FABRE et al. 2015; OLTRA-CARRIÓ et 
al. 2015; VEREECKEN et al. 2014); second, the emerging data-driven machine learning 
approaches which increasingly are applied in remote sensing (STAMENKOVIC et al. 2013; ALI et 
al. 2015). The latter are justified by the potentials of machine learning to process large data, in 
case of satellite-based data, and handle non-linear regression problems such as modeling soil-
moisture dynamics. The majority of these machine learning approaches integrate supervised 
learning, e.g. Random Forest (RF), Support Vector Regression (SVR), or artificial neural 
networks.  
Despite of all progress in the combination of hyperspectral data and machine learning 
approaches, the uncertainty to derive estimations from the spectral surface states on subsurface 
conditions remains. This uncertainty of state measurements even exists in the domain of point-
based pedo-hydrological monitoring (JACKISCH et al. 2018). Techniques which can quantify 
water distribution in the soil continuum gradually emerge (KOESTEL AND LARSBO 2014; 
SCHLÜTER et al. 2016, JACKISCH et al. 2017). From a process-perspective, the soil surface is 
known as central area related to the partitioning and redistributing of precipitation before the 
latter infiltrates into the soil matrix and flows in subsurface paths (among others BROOKS et al. 
2015, JARVIS 2007, NIMMO 2016).  
Referring to this characterization, we seek to address the complex modeling of soil moisture 
dynamics based on spectral data and by conducting a multi-sensor field experiment:  

 by creating defined surface conditions during irrigation and subsequent drying of the 
study area and 

 by explicitly monitoring the development of the thermal conditions in the subsurface and 
ground at the atmospheric boundary in one dimension with diverse sensor systems. 

In addition to the multi-sensor field experiment, we present a framework which involves 
standard supervised learning approaches for estimating subsurface soil moisture dynamics solely 
with hyperspectral data in order to analyze the potential of remote sensing as a stand-alone tool.  
After presenting the field experiment in Section 2, we explain in detail the measured dataset in 
Section 3. Subsequently in Section 4, we describe the applied machine learning approaches to 
estimate soil moisture values and dynamics. Thereupon, we present the derived results and 
discuss these results in Section 5. The paper concludes in Section 6 and we give a summary of 
prospective studies.  
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2 Field Campaign 

To correspond as much as possible to real-world conditions, we performed our field experiment 
on a grassland site and differ thereby from the bare-soil laboratory experiments. The field 
campaign was conducted between the 15th and 21st August 2017 in Linkenheim-Hochstetten, 
Germany. The grassland site on loamy sand was chosen for its behavioral hydrological properties 
and its accessibility.  
The experiment was designed in eight plots covering an area of one square meter each (Fig. 1). 
The plots in row 1 are intensively monitored and the plots in row 2 functioned as replica with 
fewer observations. The pedo-hydrological states and dynamics of the plots were monitored 
using several time domain reflectometry (TDR, IMKO Pico32) probes and tensiometers 
(METER T5). In addition, a Bromide tracer (3 g/L KBr) was used in the irrigation water, which 
was resampled two hours after the end of irrigation in percussion drilled core samples with 8 cm 
diameter. These cores were sampled in 2 cm increments to about 40 cm depth for Bromide 
analysis; for methodological details see JACKISCH 2017.  
The irrigation was facilitated by a drip irrigation platform (ALLROGGEN et al. 2017), fed from a 
common reservoir. Outflow was monitored by a mechanical meter. To maximize the number of 
functional replica, the irrigation scheme is based on pulses of five liter, except for the last pulse 
in column D with 15 L. Moreover, the irrigation intensities increased (see height of irrigation bar 
in Fig. 1) in steps of approximately 0.3 L/min, 0.8 L/min, 1.2 L/min, and 2 L/min. To provide 
data on the dynamics of subsurface conditions, we employed ground penetrating radar (GPR) 
measurements to record repeated shot gather and common offset profiles across the experimental 
plots (Fig. 1).  

Fig. 1: Sketch of the experimental plots and the instrumentation. Each plot has a size of 1m2. The 
irrigation pulses have been 5L each with increasing intensity. The last pulse at D1 and D2 were 
15L. 

Due to the high dependency of the electromagnetic wave propagation velocity to soil moisture 
variations, the GPR is frequently used for mapping spatial variations of soil moisture (e.g. 
HUISMAN et al. 2003). In principle, GPR transmits an electromagnetic wave and records the 
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signal at one or several receivers. The recorded signals are used to calculate the GPR propagation 
velocity and estimate the soil moisture content.  
As remote sensing techniques, we installed a hyperspectral snapshot camera, a hyperspectral 
spectroradiometer, and an infrared (IR) camera mounted on a stage at 10 m distance to avoid 
interference with the GPR. A hyperspectral snapshot camera (Cubert) presents in this paper the 
primary remote sensing sensor system. It recorded frames of the plot areas. Additionally, we 
measured hyperspectral, point-based spectra (ASD). Thus, we are able to compare the 
hyperspectral snapshot data and the hyperspectral point-measured data (cf. Fig. 2). With the 
long-wave infrared (LWIR) measurements (FLIR), we extend the spectral range. Table 1 outlines 
the descriptions of the applied remote sensing sensors.  

Table 1: Description of the installed remote sensing sensor systems 

Sensor System Spectrum Channels 
Measurement 

Frequency 
Spatial Resolution 

Cubert UHD 285 

(hyperspectral snapshot) 
450 - 950 nm 125 20 / hour 50 × 50 

ASD FieldSpec 4 

(spectroradiometer) 
350 - 2500 nm 2151 1 / hour 1 × 1 

FLIR Tau2 640 (LWIR) 7.5 - 13.5 μm 1 10 / hour 640 × 512 

Fig. 2 provides a summary of the used sensors system and measured data during the field 
campaign. The linkage between soil-moisture values as reference data and hyperspectral images 
as input data is used in this paper to address the estimation of subsurface soil moisture with 
supervised learning approaches.  

Fig. 2: Summary of the measured sensor data split into reference data (rows) and input data for 
modeling (columns). Green cells with “✓” characterize the data used in this paper. Cells 
labeled with “X” characterize the linkages of reference and input data which we will approach 
in prospective studies. Cells labeled with “?” symbolize linkages which we intent to study, if 
they can be pursued.  
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3 Data Processing & Analysis 

3.1 Hydrological Processes  

The different irrigation schemes and respective soil water redistribution result in stepwise 
increases of soil moisture as shown in Fig. 3. A conversion of the changes in soil moisture to the 
recovery of absolute water input outlines the boundaries of certainty of the experiment and 
sensor-based soil water monitoring. Fig. 3 cumulates the total water recovery at the sensors of 
the four plots (A1, B1, C1, and D1). With a perfect recovery, each step would be exactly 5 mm 
and the recession curves would be very gentle as in A1 and C1 of Fig. 3. The deviation can be 
explained an occurrence of free water, a lateral diffusive redistribution from the plot, and a non-
uniform flow field. Peaking maxima and steep recession curves suggest partially quick lateral 
redistribution of free water. 

As complementary reference, we derived soil water retention properties for the test site based on 
undisturbed ring samples (Fig. 4). When plotting the observed pairs of soil moisture and matric 
potential, deviations from the laboratory-derived dying curve can be attributed to the existence of 
free water. As such, these periods may be least suitable to assume locally homogeneous and 
well-mixed states. 

 

Fig. 3: Left: Water balance in the plots A1 to D1 on the day of the irrigation. Right: Water balance 
over the course of the experiment. 

 

Fig. 4: Exemplary laboratory and in-situ soil water retention to identify non-behavioral states of plot 
C1. These mostly occur immediately after the irrigations. 
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As a reference for the overall event water distribution into the subsurface, the concentration 
profiles of Bromide tracer are considered. For the light irrigation with 5 L in 17 min (A1), 
infiltrating water reaches almost 0.2 m depth with a peak around 0.15 m (Fig. 5, left). 
Interestingly, this local peak persists over the different plots. Moreover, relative and absolute 
surface concentrations do not deviate much from the different irrigations. According to the 
cumulative recovery plots in Fig. 5 (right), it can be concluded that high irrigation intensities do 
not necessarily result in stronger surface signals. Furthermore, approximately 45% of the 
irrigated tracer mass represents the maximum of the relative recovery in the top 4 cm. At this 
level, we expect to deduce the surface signals. 

During the drying process of the experiment, the surface states of the different plots return to 
antecedent state, with continued drying after five days. The established state variance between 
the plots converges only slowly (Fig. 3, right).  
Based on the hydrological findings, we assume that the irrigated water established a non-uniform 
flow field into the subsurface and reached a depth range between 0.2 m to 0.4 m. The post-
irrigation recession is not uniquely defined by the irrigation amount alone. Different 
mobilizations in the subsurface may result in similar surface soil moisture dynamics. This effect 
can be seen in Fig. 3 (left) at 20 mm and 30 mm irrigation. With respect to functional coherence, 
we have shown that datapoints after initial irrigation and briefly after the successive irrigation 
pulses should be excluded from references for the spectral signals (see Section 4). 

3.2 Ground Penetrating Radar Data Processing 

GPR data are collected during the first two days of the experiment to provide information on the 
subsurface heterogeneity and the spatial soil moisture patterns. We used a pulseEKKO PRO 
GPR system equipped with a pair of 1 GHz shielded antennas. To ensure accurate and repeatable 
positioning, the GPR antennas were attached to wooden guides and their position was recorded 
by a self-tracking total station while we recorded a series of common offset profiles and shot 
gathers (not shown here). In total, we recorded 87 GPR profiles at irregular time intervals.  

  

Fig. 5: Bromide tracer recovery. 
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The GPR data processing follows a standard processing scheme including a bandpass filter, time-
based amplitude scaling, first-arrival based zero-time correction, gridding to a regular 0.01 m 
spacing and a Kirchhoff migration approach using a constant velocity of 0.1 m/ns.  
In Fig. 6, we present a processed common offset GPR profile originating from plot B. The data 
show direct signals until a traveltime of 8 ns. Later signals are reflected at subsurface structures. 
For interpreting these data in terms of soil moisture changes, we identify traveltime differences 
to a reflector over the course of the experiment by applying a correlation based automatic 
picking algorithm starting with a seed traveltime of 15 ns (corresponding to a depth of 0.6 m). 
The results of this approach (exemplary shown as a red line in Fig. 6) show traveltime variations 
in the order of 0.5 ns. For a hydrological interpretation, we apply a petrophysical translation of 
traveltime differences to soil moisture variations based on the complex refractive index model 
(CRIM) as presented by ALLROGGEN et al. (2015) using a realistic estimate for the initial soil 
velocity of 0.1 m/ns.  

 

Fig. 6: Exemplary common offset GPR profile from plot B recorded at 10:57 in the morning of the first 
day of the experiment. Red dots mark the traveltimes selected by our correlation analysis. 
Orange lines mark the boundaries of the irrigation plots 

In Fig. 7, we present exemplary results for the retrieved spatial soil moisture variation for plots A 
and B. We notice a good agreement of the total detected changes for the irrigated water (5 mm 
for plot A and 10 mm for plot B) in the time shortly after the end of the irrigation and a gradual 
drying afterwards. It should be noted that several structures in the signal persist over the course 
of the experiment. With regard to remote sensing application this method provides spatial details 
on the interpretation of soil moisture dynamics. However, one has to notice the integration depth 
of 0.6 m. Thus, surface moisture cannot be resolved. For making these signals possible, we 
recorded shot gathers during the field experiment, which by analyzing the direct arrivals can 
provide information on the shallower soil moisture variations. With regard to point-based soil 
moisture measurements, the deviations in event water recovery (Fig. 4) can also be attributed to 
limited representatively of single TDR probes in the diverse state field. 
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Fig. 7: Changes in soil moisture along common offset profile inferred from changes in apparent 
two-way traveltime to reflector. 

3.3 Remote Sensing Data Processing 

Since the hyperspectral snapshot sensor provides the highest temporal resolution, the major 
analysis in the remote sensing part of this paper is performed on the snapshot data. To apply 
machine learning (ML) approaches, the feature selection presents a prerequisite for the latter.  
In this paper, we conduct two different feature selection procedures. First, the average spectra of 
each plot and measurement are calculated with respect to the approximated position of the TDR 
probes (Fig. 8, left). The wooden guides (cf. Fig. 8, left) are masked and ignored in the 
calculation of the average spectrum. The spectralon (cf. Fig. 8, left) functions as white reference 
of the spectrum in every image. Second, we dismiss five bands at the beginning and five bands at 
the end of the spectrum to remove occurring sensor artefacts. On the basis of the comparison in 
Fig. 8 (right) between a spectroradiometer and a snapshot, these artefacts are identifiable. The 
spectroradiometer data functions as a cross check for the snapshot data. The shapes of both 
spectra are similar, but the amplitudes of both distributions differ clearly. The observed offset 
indicates differences in the calibration and measurement angle.  
Two aspects have to be considered: First, the estimation in the following sections relies on a 
specific sensor, in this case the hyperspectral snapshot sensor. Second, with respect to the similar 
spectra shapes, we assume that both hyperspectral sensors measured the same reflectance of the 
surface soil moisture states. 
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Fig. 8: Left: An example of a hyperspectral snapshot. The 50×50 image is pan-sharped to 
1000×1000 due to visualization purposes. In context of the modeling approach, the raw 
images with the 50×50 resolution are used. The dark areas are masked and, based on the 
white grid areas, the average spectra are calculated. Right: Exemplary spectra of the 
spectroradiometer and the snapshot sensors recorded at the same plot and at the same time. 

In addition to the hyperspectral data acquisition, the infrared (IR) data are averaged to calculate 
an average temperature value. No further pre-processing is applied on the IR data. After a pre-
analysis of the data, we decided to exclusively focus on the estimation quality of the 
hyperspectral data importance in the regression. Within the entire multilateral dataset, the IR as 
well as the hyperspectral spectroradiometer measurement are included and can be analyzed in 
future studies. 
In the following, we refer to the measured soil moisture value (5 cm) as reference data combined 
with the simultaneous recorded, pre-processed as well as averaged hyperspectral data as a single 
datapoint. In total, the dataset consists of 1940 datapoints.  

4 Regression Methods 

The supervised learning approach is performed with the hyperspectral image data as input vector 
and the soil moisture data as desired output value. For the soil-moisture estimation, we apply 
common regression methods i.e. Random Forest (RF) (cf. BREIMAN 2001), extremely 
randomized tress (ET) (cf. GEURTS et al. 2006) as an extension of the RF algorithm, as well as 
Support Vector Regression (SVR) (cf. VAPNIK 1995). These regression methods represent 
model-independent approaches. 
The RF and the ET regressors are implemented in the Python package scikit-learn (PEDREGOSA 
et al. 2011). We perform the regression with the default settings of hyperparameters, defining the 
number of estimators in both methods. Hyperparameters are parameters set before the 
estimator’s training process. The regression result converges with 1000 estimators. The RF and 
ET regressors ranks the importance of the input variables after the training (cf. Section 5). The 
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support vector regressor (SVR) is based on the package libsvm (CHANG 2011) and is also 
implemented in Python’s scikit-learn. The SVR hyperparameters are tuned with a grid-search 
approach. 
The dataset is split randomly into a train subset of 382 datapoints and a test subset of 1558 
datapoints. For a reasonable modeling of continuous soil moisture variables, the distributions of 
both subsets have to be representative of the soil moisture distribution in terms of distribution 
range and, if possible, in terms of distribution shape. As outlined in Section 3.1, the soil moisture 
distribution differs between the different plots. Thus, we have to consider these effects in context 
of the soil moisture modeling based on hyperspectral data. Pre-emptively, we exclude 
combinations between two plots (e.g. A1 and B1) for the training and validation.  
Providing the regressor with data from all plots enables the machine learning approaches to 
identify spectral bands which are correlated to the soil-moisture values. Fig. 9 provides 
histograms of the soil moisture distribution in the test and training subsets. All datapoints have 
been cross-checked with the hydrological findings introduced in Section 3.1. In coherence with 
the hydrological interpretation of the observations, we exclude datapoints which are measured 
after initial irrigation and briefly after the successive irrigation pulses.  

 

Fig. 9: Soil-moisture distribution of the test (blue) and train (green) subset. 

The regression parameters are learned from conjugate single input and reference datapoints. 
Thus, time is not used in these approaches, neither for training nor for estimation. By this, it is 
possible to estimate soil moisture also from one single hyperspectral image, like in the satellite-
case. The modeling process is outlined in Fig. 10. 
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Fig. 10: Regression schema for estimating soil moisture 

5 Results & Discussion 

The regression results are summarized in Fig. 11 and Table 2. The SVR performs badly with a 
coefficient of determination R2 of 56%. RF and ET outperform the SVR to solve the presented 
regression problem. RF reaches a R2 of 73% and a root mean squared error (RMSE) of 2.00 (%-
soil moisture). The best regression results are achieved by the ET with a R2 score of 78% and a 
RMSE of 1.81 (%-soil moisture). 

 

Fig. 11: Regression results for the SVR, RF, and ET.  

 

Table 2: Regression results with the coefficient of determination R2 and the RMSE. 

 R2 in % RMSE in %-soil moisture 

SVR 56.38 2.58 

RF 73.69 2.00 

ET 78.41 1.81 
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Fig. 12 shows the feature importance of the hyperspectral bands based on the ET regressor as 
well as the mean spectrum of the dataset with its respective standard deviation. In contrast to 
widely used spectral indices, the supervised learning approaches RF and ET weight the input 
vector (hyperspectral data) by means of their importance for the estimation quality. Considering 
the feature importance, we recognize that the spectral bands between 720 nm and 850 nm are 
significantly more important than the remaining ones. While the variance of the mean spectrum 
is relatively large in the upper third of the band spectrum, the feature importance distribution 
shows a peak between 720 nm and 850 nm. The bands between 850 nm and 930 nm possess a 
minor feature importance and a large variance. This finding indicates that these band exhibit 
noise, e.g. occurring due to weather and sensor conditions. Furthermore, the RF and ET separate 
the reflectance of vegetation and soil moisture without further information on the underlying 
processes is inserted.  

 

Fig. 12: Mean spectrum of the dataset with its standard deviation as error bars (blue line), feature 
importance of the ET regressor (red bar plot). 

6 Conclusion & Outlook 

In this paper, we investigated the potential of hyperspectral data for surface soil moisture 
modeling in grass-land like areas. We acquired a multi-sensor dataset measured in August 2017 
in Linkenheim-Hochstetten, Germany. The resulting dataset consists of data from a suite of 
different hydrological, geophysical, and remote sensing systems. We presented the respective 
sensor data as an overview. In extension to previous remote sensing studies focusing on bare soil 
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experiments in the context of modeling surface soil moisture, we transferred the data acquisition 
to a grass side.  
As input data hyperspectral and hydrologically reasonable data are used. The applied standard 
machine learning approaches only rely on the described input data: only artefacts were excluded, 
but no pre-processing was conducted. The derived first results reveal that an estimation of 
surface soil moisture can be achieved based on hyperspectral data in combination with machine 
learning approaches. An additional implementation including e.g. tuning of regressors will be 
conducted in future studies. Furthermore, we demonstrated that an experiment at a complex 
environment, e.g. grass soil, is feasible. We showed that the proposed supervised methods are 
able to handle this complexity, if the proposed setting of hyperspectral input and desired soil 
moisture data is given. 
Coming in short to the hydrological perspective, further research will be conducted in modeling 
the excluded datapoints (measurements immediately at the irrigation point). One promising 
aspect to tackle this challenge might be to consider the infrared data additionally in the context of 
machine learning. The GPR data show a level of spatial heterogeneity, which was not modeled in 
this study. Nevertheless, when studying spatial variations this method provides the possibility for 
validating and training spatial classification approaches. 
For prospective studies, we intend to publish the aggregated dataset. 
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