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Abstract: Leaf area index (LAI) is an important indicator of plant growth and yield that can be
monitored by remote sensing. Several models were constructed using datasets derived from SRS and
STR sampling methods to determine the optimal model for soybean (multiple strains) LAI inversion
for the whole crop growth period and a single growth period. Random forest (RF), artificial neural
network (ANN), and support vector machine (SVM) regression models were compared with a partial
least-squares regression (PLS) model. The RF model yielded the highest precision, accuracy, and
stability with V-R2, SDR

2, V-RMSE, and SDRMSE values of 0.741, 0.031, 0.106, and 0.005, respectively,
over the whole growth period based on STR sampling. The ANN model had the highest precision,
accuracy, and stability (0.452, 0.132, 0.086, and 0.009, respectively) over a single growth phase based
on STR sampling. The precision, accuracy, and stability of the RF, ANN, and SVM models were
improved by inclusion of STR sampling. The RF model is suitable for estimating LAI when sample
plots and variation are relatively large (i.e., the whole growth period or more than one growth
period). The ANN model is more appropriate for estimating LAI when sample plots and variation
are relatively low (i.e., a single growth period).

Keywords: LAI retrieval; hyperspectral remote sensing; sampling method; random forests; artificial
neural networks; support vector machine

1. Introduction

Soybeans are the most widely grown oil crops in the world. Soybean leaf area index (LAI) reflects
photosynthetic rate [1,2] and crop yield [3]. Therefore, LAI is an essential parameter for breeding
high-yield soybean plants [4,5]. Methods for estimating LAI can be categorized as direct methods and
indirect methods [6,7]. Indirect methods adopt devices such as plant canopy analyzers (e.g., LAI-2000,
LI-COR, Inc., Lincoln, NE, USA), digital hemispherical photography (DHP), and remote sensing [8].
Remote sensing technology is cost-effective and non-destructive and, thus, a prevalent technology for
estimating LAI [9].
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Studies have proposed numerous methods for LAI extraction based on observed hyperspectral
reflectance bands [10,11], making accurate LAI retrieval a popular theme of remote sensing
applications [12]. Retrieval models can be divided into physical models and statistical models [13–16].
Physical models are often applied to simple homogeneous crops but require several prerequisites
(e.g., a homogeneous canopy), specific circumstances, and structural parameters, which limits their
application [17–19]. Statistical models for LAI retrieval include parametric and non-parametric
regression models. Parametric models are simple and easy to understand, but they make poor
use of available spectral information and the inversion accuracy is largely dependent on selected
bands [16,20]. In contrast, non-parametric regression methods make full use of spectral information
and have a high non-linear adaptation; however, one of their main drawbacks is instability when
applied to datasets that deviate from the training dataset [21]. Since soybean breeding uses many
varieties, we focused on the application of nonparametric models for LAI inversion. Non-parametric
regression models have high methodological accuracy and robust performance [16] and, thus, are
widely used for physiological and biochemical parameter inversion. For instance, Darvishzadeh et al.
used partial least squares regression (PLS) to retrieve chlorophyll content and LAI of heterogeneous
grassland canopies, respectively, and the prediction accuracy of LAI was higher than chlorophyll
content [22]. Han et al. used random forest (RF) and support vector machine (SVM) methods to invert
the canopy LAI of apple trees; the estimation accuracy of the RF model was better than that of the SVM
model, and RF was suitable for apple LAI estimation throughout the full fruit growth period [23]. Omer
et al. used artificial neural network (ANN) and SVM methods to predict the LAI of six endangered
tree species and found that the SVM model had higher prediction accuracy compared with the ANN
model [24]. Verrelst et al. used ANN, SVM, nuclear ridge regression (KRR), and Gaussian process
regression (GPR) methods to predict LAI and concluded that GPR was a fast and accurate nonlinear
retrieval algorithm [25]. Mustafa et al. combined the Bayesian network (BN) method with a forest
growth model to improve LAI prediction accuracy [26].

Numerous studies have employed remote sensing to estimate crop LAI, but few have focused
on crop-breeding fields (i.e., multiple strains) using different sampling methods [27]. Given that
nonparametric models are affected by training sets, previous studies have proposed probabilistic
sampling [21], K-fold sampling [28], and Markov Chain Monte Carlo (MCMC) sampling [29] methods.
K-fold sampling and MCMC sampling can overcome the influence of data distribution on the
calibration set to a certain extent, but the calibration set should be adjusted repeatedly in combination
with the model [28], and it is difficult to ensure agreement of the calibration set with the overall
data distribution. The least absolute shrinkage and selection operator (LASSO) does not fully utilize
hyperspectral data. Bayesian networks cannot ensure that the calibration set distribution is close
to the overall data distribution. To overcome these shortcomings, we used two sampling methods
(simple random sampling, SRS, and stratified type sampling or stratified sampling, STR) [30] and four
nonparametric models (decision tree learning, artificial neural networks, kernel methods, and linear
non-parametric models; RF, ANN, SVM, and PLS, respectively) [16] for LAI inversion over a single
growth stage and the whole growth stage of multiple strains of soybean plants.

The objective of this study was to comprehensively evaluate the performance of RF, ANN,
and SVM models in LAI inversion using hyperspectral data and corresponding ground data for
heterogeneous soybean crops. All ground measurements and remote sensing data were collected in
Jiaxiang County, Jining City, Shandong Province in 2015. Following a brief introduction on the merits
and shortcomings of LAI inversion, the RF, ANN, and SVM regression methods and SRS and STR [30]
sampling methods are presented. The theoretical basis and application of the RF, ANN, and SVM
methods and the evaluation index are discussed in Section 2. LAI results for the whole growth period
from the RF, ANN, and SVM models are presented in Section 3. Finally, the discussion and conclusions
of this study are summarized in Sections 4 and 5, respectively.
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2. Materials and Methods

2.1. Study Site and Experimental Design

The experiment was carried out in Jiaxiang County, Jining City, Shandong Province
(116◦22’10”~116◦22’20”E, 35◦25’50”~35◦26’10”N), located at the junction of the Zhongnan Mountains
and the North China Plain (Figure 1). The terrain is mainly composed of plains, is located in the
warm temperate zone, and experiences a monsoon continental climate. The average elevation is
35–40 m, the average temperature is 13.3 ◦C–14.1 ◦C, the average annual precipitation is 597–820 mm,
and the frost-free period is approximately 199 days. A total of 126 sampling plots of hybridized
breed combinations were used as the research target. The breed combinations were generated
from 46 varieties of soybeans planted on 13 June 2015, using 300 kg/hm2 of compound fertilizer
(i.e., 15% NPK) as the base fertilizer and conventional agricultural management practices. Data
were collected five times on 1 August 2015 (flowering period, R1), 13 August (bearing period, R3),
1 September (full pod period, R5), 17 September (beginning of the seed period, R6), and 28 September
(seed filling to mature stages, R7). Planting density in the test area was approximately 195,000/hm2.
There were 126 sampling plots during each growth period.
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Figure 1. Distribution of the sampling sites in Shandong Jiaxiang. Each plot is a 3 × 5 m rectangle with
six rows of crops 5 m in length, and each row gap is 0.5 m. The average spectrum of SCA1001 plot
acquired from the snapshot imaging hyperspectral spectrometer.

2.2. Data Collection

Unmanned aerial vehicles with eight rotors, a maximum load capacity of approximately 6 kg, and
a flying altitude ranging from 50 m to 100 m were equipped with a hyperspectral snapshot camera
(Cubert GmbH, Ulm, Baden-Württemberg, Germany) and a single Pokini Z small board computer
(EXTRA Computer GmbH, Sachsenhausen, Germany). The total weight of the camera was ~470 g,
and its housing dimensions were about 28 × 6.5 × 7 cm. The instrument had a spectral range of
450 to 950 nm, a spectral sampling interval of 4 nm, a spectral resolution of 8 nm at 532 nm, and a
total of 125 spectral channels. For each band, a 50 × 50 pixel image with a 12 bit (4096 DN) dynamic
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range was created by projecting different bands to different parts of a charged coupled device (CCD).
A grayscale image with a resolution of 990 × 1000 pixels was captured at the same time the HS image
was recorded.

Before data collection, a black and white board was used for radiation calibration of the UHD
185. Under the control of Pokini Z software (produced by German Extra Computer Gmbh), data
were collected with a sampling interval of 1 m from a height of 50 m and a focal distance of 23 mm.
Hyperspectral pixels were acquired with a spatial resolution of 35 cm, and grey-scale pixels were
acquired with a spatial resolution of 1.4 cm. Data were stored in the Pokini Z computer, and the
ground control station remotely controlled the flight via a wireless network created by Pokini Z [31].
With the camera software, the hyperspectral resolution could be pan-sharpened to the same resolution
as the grayscale image. The unmanned aerial vehicles followed the same routes during each of the five
growing periods.

Ground data were acquired simultaneously with the unmanned aerial vehicle data. LAI was
measured with an LAI-2200C canopy analyzer (produced by the USA Li-Cor, Lincoln, NE, USA) [32].
The instrument uses a “fish-eye” optical sensor with a 270◦ vertical field of view and a 360◦ horizontal
field of view to measure transmitted light at 5 angles above and below the canopy. The leaf area index
was calculated using the radiation transfer model for vegetation canopy. The first order derivatives
of 125 spectra were taken to eliminate noise from the soil, resulting in 124 first order derivative
spectra [33,34]. A boxplot was used to remove outliers [35,36]. Table 1 shows the distribution of LAI
at different growth stages. LAI values were significant (p > 0.05) during the R6 and R3 periods only,
indicating that the LAI distribution was unbalanced during most growth periods.

Table 1. Statistical description of soybean LAI. p value is the result of Kolmogorov-Smirnov test.

Growing
Period

Observation
Plots Max Value Min Value Mean Value p Value Coefficient

of Variation

R1 period 96 5.705 1.285 2.988 0.000 0.331
R3 period 126 9.06 5.415 7.295 0.051 * 0.116
R5 period 123 8.22 3.15 5.479 0.002 0.197
R6 period 116 6.54 1.83 4.24 0.192 * 0.262
R7 period 82 6.78 1.585 3.579 0.000 0.345

R1~R7 period 543 9.06 1.285 4.906 0.000 0.382

Note: * indicates that the observed LAI is uniformly distributed.

Data distributions influence machine learning [21]. When the population data is uniformly
distributed, SRS provides a calibration set that reflects the population data. When the data distribution
is unbalanced, it is difficult to produce a good calibration set, but the STR method can avoid this
problem [30]. The STR method used in this study divided the overall data into small groups by based
on LAI, and a simple random sample was collected from each group. The more stratified the data,
the closer a random sample is to the population dataset. However, sampling efficiency and sample
representativeness are reduced when the number of strata is less than 30 [37,38]. Every 7–10 days
represents one soybean growth period, for a total of approximately 16 periods throughout the whole
growth process. Therefore, 543 samples from the whole growth period were divided into 16 layers,
with each layer including 34 samples. Sampling points from the full pod grain period (total of 123)
were divided into 4 layers with 31 samples per layer. Approximately 70% of the samples collected in
2015 were used for the calibration set, and the remaining samples were used for the validation set [23].
For unbiased evaluation of the RF, ANN, and SVM regression models, the LAI data were normalized
before being input into the models.
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2.3. Methods

To further study LAI estimation by RF, ANN, and SVM models, the SRS and STR sampling
methods were used to produce calibration sets [30]. The calibration set contained 70% of the total
samples, and the remaining samples were used as validation set. To explore model performance,
LAI inversion was carried out over the whole growth period and a single growth period. The full pod
period is the most important period for soybean breeding [27], and LAI during this period is uniformly
distributed and similar to distributions during most of the other growth periods. There were some
shortcomings in the comparative study of the inverse LAI models for multiple strains used in this
study. We only considered the effects of object characteristics (heterogeneous vegetation) and important
influential factors (model calibration set) of nonparametric models on LAI model performance. In the
next step, we will further compare the performance among Bayesian, Gaussian process regression
(GPR), and models combined with sampling methods for physiological and biochemical parameter
inversion for multiple soybean strains.

One-hundred and twenty four first order derivative spectra and two sampling methods were
used to establish the RF, ANN, and SVM models, and the results reveal the necessary conditions and
advantages of the three models. A flowchart is illustrated in Figure 2.

Remote Sens. 2017, 9, 309  5 of 14 

 

period is the most important period for soybean breeding [27], and LAI during this period is 
uniformly distributed and similar to distributions during most of the other growth periods. There 
were some shortcomings in the comparative study of the inverse LAI models for multiple strains 
used in this study. We only considered the effects of object characteristics (heterogeneous vegetation) 
and important influential factors (model calibration set) of nonparametric models on LAI model 
performance. In the next step, we will further compare the performance among Bayesian, Gaussian 
process regression (GPR), and models combined with sampling methods for physiological and 
biochemical parameter inversion for multiple soybean strains.  

One-hundred and twenty four first order derivative spectra and two sampling methods were 
used to establish the RF, ANN, and SVM models, and the results reveal the necessary conditions and 
advantages of the three models. A flowchart is illustrated in Figure 2. 

Raw data

Data pre-processing

Sampling method

Stratified 
sampling(STR)

Simple random 
sampling(SRS)

Random forests
（RF)

Artificial neural 
networks(ANN)

Support vector 
machine(SVM)

Partial least 
squares(PLS)

Average value
(V-R2)

Standard deviation
(V-SDR

2)
Average value

(V-RMSE)
Standard deviation

(V-SDRMSE)

Precision Accuracy Stability Stability

Result

 
Figure 2. Flowchart of the methodology. Two sampling strategies were used separately to obtain 100 
calibration sets. RF, ANN, SVM, and PLS models were used to generate 100 V-R2 and V-RMSE. 

2.3.1. Random Forest Algorithm 

The RF algorithm is based on the classification tree algorithm [39]. RF regression uses bootstrap 
sampling, and each bootstrap sample is used to construct a decision tree. Training samples are 
constantly selected to minimize the sum of squared residuals until a complete tree is formed. Multiple 
decision trees are formed, and voting is used to obtain the final prediction [40]. RF models can handle 
high-dimensional data and evaluate the feature order, which affects the sample classification and 
limits interactions between features. An advantageous characteristic of RF modeling is that it is not 
subject to over-fitting [23]. The most important parameter of RF is the number of trees; the more trees, 
the higher the accuracy of the RF prediction. Sufficient tree size can ensure the diversity of integrated 
classifiers. The model was established and validated using the RF function in the “randomForest” 
package [41] within the statistical software package R 3.2.0. 

Figure 2. Flowchart of the methodology. Two sampling strategies were used separately to obtain
100 calibration sets. RF, ANN, SVM, and PLS models were used to generate 100 V-R2 and V-RMSE.

2.3.1. Random Forest Algorithm

The RF algorithm is based on the classification tree algorithm [39]. RF regression uses bootstrap
sampling, and each bootstrap sample is used to construct a decision tree. Training samples are
constantly selected to minimize the sum of squared residuals until a complete tree is formed. Multiple
decision trees are formed, and voting is used to obtain the final prediction [40]. RF models can handle
high-dimensional data and evaluate the feature order, which affects the sample classification and limits
interactions between features. An advantageous characteristic of RF modeling is that it is not subject to
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over-fitting [23]. The most important parameter of RF is the number of trees; the more trees, the higher
the accuracy of the RF prediction. Sufficient tree size can ensure the diversity of integrated classifiers.
The model was established and validated using the RF function in the “randomForest” package [41]
within the statistical software package R 3.2.0.

2.3.2. Artificial Neural Network Algorithm

ANN regression is based on the gradient learning method. It is a nonparametric nonlinear
model that uses neural network spreading between layers and simulates human brain receivers and
information processing [42]. ANN includes an input layer, hidden layer, and output layer, as well as
network initialization (i.e., the number of neurons is determined by the input and expected output to
initialize weights between neurons), hidden layer, and output layer calculations. The error values and
weights are updated to obtain the final weight [43]. ANN is a learning classification method based on
large samples and is affected by the complexities of the network structure and the sample, making it
prone to over-learning and reducing the ability for generalization. The most important parameter in
ANN regression models is the number of neurons; the more neurons, the higher the learning accuracy
and the weaker the generalization ability. The model was established and validated by repeatedly
using the nnet function in the “nnet” package to determine the suitable number of neurons [44].

2.3.3. Support Vector Machine Algorithm

SVM is a pattern recognition method based on statistical learning theory. SVM was initially used
for classification [45] but is now mainly used for classification and regression of small non-linear and
high-dimensional samples. SVM is built based on the VC-dimension of statistical learning theory
and the minimum structural risk principle. The model learning accuracy is analyzed, and learning is
performed without error recognition using limited sample information. The minimum deviation of
the hyperplane from the sample points is used to obtain the best universal ability [46]. SVMs include
linear and non-linear regressions [47]. Important parameters include the kernel function, which
reflects similarity between data points (i.e., between reflectance values) and the cost loss function
(regularization parameter) [25]. The radial basis function (RBF) was used as the kernel function, using
the ”tune.svm” and “svm” functions in the “e1071” package within R 3.2.0 to obtain the optimal cost
and gamma values [41,48].

2.3.4. Partial Least Squares Algorithm

PLS regression is a multiple linear regression method that concentrates the merits of multiple
linear regression analysis, canonical correlation analysis, and principal component analysis [49].
PLS reduces the dimensionality of high-dimensional data using principal component analysis and uses
the leave one out (LOO) method to establish the regression model [50] and reduce multi-collinearity
between variables [51]. The PLS model was created and validated through the pls functions in the
“pls” package within the statistical software R 3.2.0 [52].

2.3.5. Precision Evaluation

The validation coefficient of determination (V-R2), validation root mean square error (V-RMSE),
standard deviation of the validation coefficient of determination (SDR

2), and standard deviation
of the validation root mean square error (SDRMSE) were employed to evaluate model performance.
The modeling and validation process was repeated 100 times; therefore, the V-R2 and V-RMSE values
represent the average of 100 iterations and indicate the precision (how closely model-predicted values
are to the true values) and accuracy (how closely individual model-predicted values are to each
other) of the models [53]. The SDR

2 and SDRMSE values represent model stability [23] averaged over
100 iterations. The higher the V-R2, the smaller the V-RMSE, and the closer SD is to 0, the higher the
model precision, accuracy, and stability.
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RMSE =

√
n

∑
i=1

(yi − ŷi)
2/n (1)

R2 =

√
n

∑
i=1

(ŷi − y)2/
n

∑
i=1

(yi − y)2 (2)

SD =

√√√√ N

∑
i=1

(xi − x)2/N (3)

where yi, y, and ŷi are the LAI of the validation set for measured, average, and predictive values; n is
the plots of the validation set; Xi is repeated R2 or RMSE of the validation set; and N is the number of
modeling and validation repetitions.

3. Results and Analysis

3.1. Calibration Set and Validation Set Based on Sampling Strategy

SRS and STR sampling strategies were used to classify all samples into calibration and validation
sets. Over the whole growth period, the number of modeling samples was 400, and the number of
validation samples was 143; the corresponding numbers for single growth periods were 92 and 31.
Figure 3 shows the results of the set.seed (0) for SRS and STR in the statistical software package R
3.2.0. Boxplots for the population set, calibration set, and verification sample set based on STR were
similar for the whole growth and single growth periods. The boxplot for the calibration set acquired by
SRS similar to that for the population set, but the boxplot for the validation set was slightly different.
Calibration sets aquired by the two sampling methods and the verification set based on STR were
close to the distribution of the population set, indicating that the stratified sampling method was
more reasonable.
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Figure 3. Statistics of population set, calibration set, and validation set. STR_train represents the
calibration set acquired by stratified sampling; STR_test represent the validation set acquired by
stratified sampling; SRS_train represents the calibration set acquired by simple random sampling;
STR_test represents the validation set acquired by simple random sampling.
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3.2. Appropriate Model Parameters for LAI Inversion Model

Model construction and verification were carried out using R 3.2.0 software. The RF regression
model references parameters reported in previous literature [23,32], and the tree number was set to
500 for the whole and single growth periods. The ANN regression model used a training subset
and multiple iterations to derive the appropriate parameters [32]. The “tune.svm” function in R3.2.0
was used to find the optimal parameters for the SVM regression model [11,23]. Suitable principal
components for the PLS model were chosen based on the variance explained by the independent
variable. The optimal number of principal components was 5, and the cumulative rate of variables
was 94% for the whole growth period; the optimal number of principal components and cumulative
rate of variables were 5 and 80% for the single growth period [32]. The parameters of the final model
after parameter optimization and multiple training are shown in Table 2.

Table 2. Parameters of regression models.

RF Regression Model Parameters

Growth Period Ntree mtry Norm.votes Reference
whole growth period 500 2 TRUE Liang et al. [11]
single growth period 500 2 TRUE

ANN Regression Model Parameters

Weight Size Decay Maxit Switch for entropy
whole growth period 1 1 0.001 1000 Least squares Li et al. [32]
single growth period 1 1 0.0005 1000 Least squares

SVM Regression Model Parameters

Shrinking GammaEps C kernel Probability
whole growth period 1 0.001 0.01 1 radial basis 1 Li et al. [32]
single growth period 1 0.01 0.01 1 radial basis 1

PLS Regression Model Parameters

Ncomp Validation
whole growth period 5 cross-validation (CV) Li et al. [32]
single growth period 5 cross-validation (CV)

3.3. Comparison of Whole Growth Period Models

The validation accuracy (R2) of the regression models is shown in Figure 4 and Table 3.
The regression models based on both sampling methods were tested for significance (p < 0.01).
Compared to the non-parametric regression methods, the PLS model had similar R2 range of values
for both SRS and STR methods (0.173 and 0.171, respectively). In contrast, the SPS and STR methods
produced largely different results for the RF, SVM, and ANN models. The R2 values for the RF and
SVM models based on SRS were significantly lower than the values for these models based on STR.

The STR method somewhat improved model performance (Table 3). The SVM method based on
STR exhibited the lowest SDR

2 (0.025), RMSE (0.104), and SDRMSE (0.005), and the highest R2 (0.749).
The RF method based on STR was nearly as good, with R2 of 0.741, SDR

2 of 0.031, RMSE of 0.106,
and SDRMSE of 0.005, indicating an obvious improvement compared to the RF model based on SRS.
Although PLS based on STR performed satisfactorily (R2 of 0.689, SDR

2 of 0.033, RMSE of 0.114, and
SDRMSE of 0.006), this model exhibited the poorest performance. The STR sampling method increased
the precision (R2) and stability (SDR

2 and SDRMSE) of the three regression models and the linear
model (PLS) by varying degrees. Both the SVM and RF regression methods showed high precision
in LAI estimation. The ANN model performed relatively poorly but still exhibited higher precision
compared with the linear model. Based on SDRMSE, the STR method slightly increased the stability of
model accuracy.
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Table 3. Different model performances in the prediction of whole period soybean LAI.

Regression Method
V-R2 V-RMSE

R2 SDR
2 RMSE SDRMSE

SRS

RF 0.712 0.042 0.106 0.007
ANN 0.674 0.044 0.11 0.006
SVM 0.718 0.040 0.102 0.006
PLS 0.657 0.041 0.114 0.006

STR

RF 0.741 0.031 0.106 0.005
ANN 0.706 0.036 0.11 0.006
SVM 0.749 0.025 0.104 0.005
PLS 0.689 0.033 0.114 0.006

3.4. Comparison of Single Growth Period Models

The LAI values predicted using RF, SVM, ANN, and PLS for a single growth period (R4~R5
growth period) are shown in Figure 5 and Table 4. The difference between the maximum and minimum
R2 of the PLS model based on SRS and STR was 0.482 and 0.480, respectively. The minimum R2 of the
PLS model based on STR was higher than that of the SRS-based PLS model. The R2 values for the RF,
SVM, and ANN models based on STR were similar, but not all R2 values were significant. R2 values
for models based on the STR method were higher than values for models based on the SRS method to
some extent, but the minimum R2 (0.235) of the ANN model was larger than that of other models.

Table 4 presents an evaluation of model performance for the single growth period (full pod
period). ANN had the highest R2 and lowest RMSE for both the STR and SRS methods. The SDR

2,
RMSE, and SDRMSE values were lower and the R2 was higher for the ANN model based on the STR
method compared with the SRS-based model. The STR sampling method remarkably improved the
stability of both the non-parametric regression (i.e., RF, ANN, and SVM) and linear (i.e., PLS) models.
The ANN model exhibited the highest accuracy, precision, and stability, whereas the RF model had
the lowest precision, accuracy, and stability. However, the RF model performed better than the linear
PLS model. Therefore, the ANN model was the most suitable for LAI inversion during a single
growth period.
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Table 4. Different model performances in the prediction of single period soybean LAI.

Regression Method
V-R2 V-RMSE

R2 SDR
2 RMSE SDRMSE

SRS

RF 0.375 0.137 0.090 0.009
ANN 0.427 0.135 0.086 0.010
SVM 0.408 0.130 0.088 0.010
PLS 0.274 0.109 0.104 0.012

STR

RF 0.400 0.130 0.088 0.009
ANN 0.452 0.132 0.086 0.009
SVM 0.439 0.108 0.089 0.007
PLS 0.309 0.120 0.102 0.011

4. Discussion

The precision and stability of the LAI inversion model based on STR sampling were higher
compared with those values for models based on SRS sampling for the whole and single growth
periods (Tables 3 and 4). The linear PLS estimation model also exhibited the same trend. The RF model
was most suitable for LAI estimation during the whole growth period, and the ANN model was most
appropriate for LAI estimation for a single growth period.

The maximum V-R2 values for the two LAI estimation models were approximately the same,
but the minimum values were different (Figures 4 and 5). The V-R2 values for models based on STR
were more stable compared with values for SRS-based models because the RF, SVM, and ANN methods
use sample feature dimensions to obtain prediction results. The stronger the representation of the
samples, the stronger the generalization ability of the trained model (universal). The STR method can
ensure that samples are sufficiently representative and reduce the complexity of learning [21]. From the
principle of probability sampling (SRS and STR), we can see that the same set of data produced different
calibration sets and predicted values. As shown in Figure 6, STR ensured that the calibration and
verification sets were close to the distribution of the population set, although the prediction accuracy
was variable. To avoid the effect of the model calibration set on model evaluation, we compared the
average predicted results of the RF, SVM, ANN, and PLS models rather than case-specific results. STR
reduced the probability of case-specific results to a certain extent and enhanced model transferability.
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The selection of training samples by the two sampling methods varied slightly. The average and
median values of training samples selected based on SRS deviated from the mean and median of the
population samples. However, the distributions of training samples selected by STR were closer to
the overall sample distribution. Results for the whole and single growth periods based on the two
sampling strategies showed that the calibration set sampled based on STR for the whole growth period
was significantly better than the SRS-extracted sample. Two factors affected the sampling method
results: the sampling method and total sample distribution. SRS is a random sampling method, and
the probability of becoming part of the training sample was the same for each sample in the population.
STR divided samples into several layers using random sampling and, thus, could avoid the effect
of small sample size, resulting in a sample distribution similar to the population distribution [30].
When collecting LAI data for the same growth period of the same soybean variety, the calibration set
obtained by SRS was close to uniform distribution. The distribution of collected LAI data for different
soybean varieties in each growth period was not balanced, which is consistent with results of previous
studies [27]. To overcome the influence of growth period and soybean variety on model comparison,
previous studies have compared model performance for single or whole growth periods of the same
crop variety [23]. Most sampling methods cannot be sampled independently and must be used in
conjunction with the model. We adopted STR sampling independently to avoid the above-mentioned
factors [21,30].

One hundred repetitive extraction model calibration sets were used for LAI estimation, and
models were evaluated based on the average of 100 results. The SVM and RF models were more
accurate for the whole growth period, whereas the ANN model had the lowest accuracy (Tables 3 and 4).
However, the accuracy of the ANN model was higher for the single growth period, and that for
the RF model was the lowest. ANN models can approximate complex nonlinear relationships
sufficiently; however, when the data distribution is highly dispersed, the neural network model
requires more parameters, which influences the generalization ability and credibility of the results [54].
The performance of the RF model was lower compared with the ANN and SVM models for the
single growth period. Previous studies on SVM and RF model comparison have reported contrasting
results [23], possibly due to use of only a single plant strain and one calibration set. The RF model
is based on a large sample decision tree for high-dimensional data training and, thus, has a strong
tolerance for data faults [39]. However, it is difficult to effectively train RF models with a small sample
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size [55]. The SVM model can avoid the effects of small sample size and high dimensionality as well
as neural network structure selection and local optimization problems [46]. Based on our results, the
RF model is suitable for estimating LAI over the whole growth period, and ANN is appropriate for
estimations made over a single growth period. The SVM model exhibited high accuracy and stability
over both the whole growth period and the single stage, which is consistent with previous studies [17].

5. Conclusions

Models were constructed using datasets obtained from SRS and STR sampling methods during
the whole growth period and a single growth period to determine the optimal model for soybean
(multiple strains) LAI inversion. RF, ANN, and SVM models were compared with a PLS model based
on V-R2, SDR

2, V-RMSE, and SDRMSE. The V-R2 values of the RF, ANN, and SVM estimation models
for a single growth period were lower than the corresponding values for the whole growth period.
The RF model, which is the optimal model for the whole growth period, could accurately (V-R2 = 0.741;
V-RMSE = 0.106) and stably (SDR

2 = 0.031; SDRMSE = 0.005) predict LAI for the whole growth period.
The ANN model obtained more accurate (V-R2 = 0.452; V-RMSE = 0.086) and stable (SDR

2 = 0.132 and
SDRMSE = 0.009) estimation results than the RF model for a single growth period. The STR sampling
method was superior to the SRS sampling method, and models based on this method performed
equally well for LAI estimations over the whole and single growth periods. The ANN model produced
the best estimation for the single growth period in which sample plots and sample variation were
relatively low. The RF model was best for LAI estimations made over the whole growth period in
which sample plots and sample variation were relatively large.
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